Lecture 10 (Dec 14)
HoW 3 is posted. (Tuesday)
Due Dec. 21 (Hex tweek)
(a) 2:39 PM

Midterm Exam \leftarrow Not to torture you.
Dec 24 9-12 AM
BKD 3206
closed book / Closed Note
No cheat sheet
Basic calculator allowed
Some formulas will be provided on the exam paper.
$\prod_{\text {will be posted this }}$
weekend
More info to be added on the course web site.

Poisson Process (pp)
arrival times
request times
\Rightarrow Random arrangement of "marks" (denoted by " $x^{\text {" }}$)
on the time line.

Only one parameter characterize p p
$\rightarrow \lambda$ (rate) \leftarrow same λ that weave seen in $A=\frac{\lambda}{\mu}$
Two types of pp
we focus
on this one.
PP homogeneous PP λ is a constant
Unstructured
random

$$
N_{1}=3
$$

$$
N_{2}=2
$$

first interval
$1^{\text {st }}$ Property: $N_{1} \frac{11}{\uparrow} N_{2}$
Lindepondent
Extension:
If you have non-overlapping intervals of time, and

The" ""symbol means
"is denoted by".
the number of " x " in the $i^{\text {th }}$ interval $\equiv N_{i} \leftarrow a$ random variable (r.v.)
then the random variables
$N_{1}, N_{2}, N_{3}, \ldots$ are independent.
$2^{\text {nd }}$ property: N_{i} can be $0,1,2,3, \ldots$
L discrete $\rightarrow \operatorname{pmf}$
(probability mass function)
\measuredangle mean / expectation/expected value of N_{i}
$3^{\text {rd }}$ Property $: \mathbb{E} N_{i}=\lambda \times T_{i}$
T length of the $i^{\text {th }}$ interval.
For example,

$$
\begin{aligned}
& \mathbb{E} N_{1}=\lambda T_{1} \\
& \mathbb{E} N_{2}=\lambda T_{2}
\end{aligned}
$$

Suppose $\lambda=5$ x's per hour $3 \Rightarrow \mathbb{F N}=10 \quad x$'s

Suppose $\left.\begin{array}{l}\lambda=5 \text { x's per hour } \\ T_{1}=2 \text { hours }\end{array}\right\} \Rightarrow \mathbb{E N} N_{1}=10 \quad x^{\prime}$ s
In words,...
For any interval of length T, the expected number of " x ")s in this interval is given by

$$
\mathbb{E} N=\lambda T
$$

Small Slot Approximation/Analysis (discrete time)

$4^{\text {th }}$ property: When the interval is extremely small, it is unlikely that there will be two "x") in the interval.
advantage of considering small

$$
N_{i}=0 \text { or } 1 \leftarrow \text { Bernoulli }
$$ intervals

What do you remember about Bernoulli r.v.?
From (1), $N_{1}, N_{2}, N_{3}, \ldots$ are independent
(3), $\mathbb{E} N_{1}=\mathbb{E} N_{2}=\mathbb{E} N_{3}=\cdots=\lambda \delta$

Lecture 11 (Dec 17)

Implication:
For any interval of "small" length δ, the number of " x "'s in this interval con be approximated by a Bernoulli r.v.
The whole PP can be approximated by a sequence of ${ }^{V}$ Bernoulli $r . v . s$ with $p_{1}=\lambda \delta$. i.i.d.

$$
\begin{array}{ll}
\text { Bernoulli r.v. } X\left\{\begin{array}{l}
0
\end{array} \quad \begin{array}{l}
p[x=0] \\
p[x=1]=p_{1}=1-p_{1}
\end{array}\right. \\
\square V-\sum_{1}^{1} k \times p[x=k\rceil=n \times p\lceil\times=0\rceil+1 \times p[x=1]=p
\end{array}
$$

$$
\left.\mathbb{E} X=\sum_{k=0}^{1} k \times p[x=k]=\underset{N}{\operatorname{oxp}} \times x=0\right]+1 \times p[x=1]=p_{1}
$$

$$
\text { MATLAB }\left\{\begin{array}{l}
\operatorname{rand}(\underbrace{\text { or } \underbrace{}_{\text {binornd }\left(1, p_{1}, \tilde{1}_{1, n}\right)}}_{\left.\operatorname{si2}, e^{1}\right)<p_{1}}
\end{array}\right.
$$

$N=N_{1}+N_{2}+N_{3}+N_{4}+\cdots+N_{n} \longleftarrow$ Summation of n

$$
\delta=\frac{T}{n}
$$

i-i.d. Bernoulli r.v.
with parameter p_{1}

$$
n \rightarrow \infty
$$

is Binumial $\left(n, p_{1}\right)$
Characteristic Function

$$
\varepsilon_{x}(u)=\mathbb{E}^{j X u}
$$

For Bernoulli r.v.,

$$
\begin{aligned}
& C_{N_{i}}(u)=\sum_{k=0}^{1} e^{j k u} \times p[x=k] \\
&=e^{j 0 u} p_{0}+e^{j 1 u} p_{1}=p_{0}+p_{1} e^{j u} \\
& 1-\lambda \delta \\
& \lambda \delta \\
&=1-\lambda \frac{I}{n}+\lambda \frac{I}{n} e^{j u} \frac{T}{n}
\end{aligned}
$$

$$
\begin{aligned}
\mathscr{C}_{N}(u) & =\mathscr{C}_{N_{1}}(u) \times \mathscr{C}_{N_{2}}(u) \times \mathscr{C}_{N_{0}}(w) \times \cdots \times \mathscr{C}_{N_{n}}(w) \\
& =\left(\varphi_{N_{1}}(u)\right)^{n}=\left(1-\frac{\lambda}{n}+\lambda \frac{T}{n} e^{j u}\right)^{n}
\end{aligned}
$$

Take limit as $n \rightarrow \infty$

$$
\begin{aligned}
& =\left(1+\frac{1}{n}\left(-\lambda T+\lambda T e^{j u}\right)\right)^{n} \\
& =\left(1+\frac{1}{n} x\right)^{n} \rightarrow e^{+x}
\end{aligned}
$$

$$
\left(-\lambda T+\lambda T e^{j \mu}\right)
$$

Lecture Page 4

$$
\begin{aligned}
& \rightarrow e^{\left(-\lambda T+\lambda T e^{j \mu}\right)} \\
& \rightarrow e \\
& \Rightarrow \text { Poisson rV. N } \\
& D(\lambda T) \\
& \text { check this. } \\
& P[N=k]=e^{-\lambda T} \frac{(\lambda T)^{k}}{k!} \\
& \mathscr{P}_{N}(\mu)=\sum_{k=0}^{\infty} e^{j k \mu} e^{-\lambda T} \frac{(\lambda T)^{k}}{k!} \\
& \left(e^{\sigma}=\sum_{k=0}^{\infty} \frac{\sigma e^{k}}{k!}\right)
\end{aligned}
$$

Conclusion
If N is the number of arrivals in an interval of length T,
then N is a poisson riv. with mean λT.

Lecture 12 (Dec 21)
Back to Pp: One more Property of pp

Let's consider this call request.

Find the probability that the next call request happens in this slot.
(1) $p[W$ in the blue slot $]=\int_{w}^{w+\delta} \frac{f}{w}(\tau) d \tau$
(2) how many slot? $\approx \frac{w}{\sim} \quad w-1$
$P[\omega$ in the blue slot $]=(1-\lambda \delta)^{\sigma} \quad(\lambda \delta)$

These two quantities should be the same.

$$
f_{w}(w) \times \bar{\sigma}=(1-\lambda \delta)^{\frac{w}{\sigma}-1} \lambda \delta
$$

Let $\delta \rightarrow 0$ (make slots small)

$$
\begin{aligned}
f_{n}(w) & =\lim _{\delta \rightarrow 0}(1-\lambda \delta)^{\frac{w}{\delta}-1} \lambda \\
& =\lim _{\frac{1}{\delta} \rightarrow \infty}\left(\left(1-\frac{\lambda}{1 / \delta}\right)^{\frac{1}{\delta}}\right)^{w} \lambda(1-\lambda \delta)^{-1} \\
& =e^{-\lambda w} \times \lambda \times 1 \\
& =\lambda e^{-\lambda w} \leftarrow \text { exponential }
\end{aligned}
$$

